Accessing the sea quark polarization via Wmeasurements at PHENIX

Xiaorong Wang for PHENIX collaboration

Proton Spin 1/2: Crisis behind one half

RHIC Spin Program

- ☐ Longitudinal spin program
- -- Gluon polarization distribution

$$\Delta G = \int_0^1 dx \cdot \Delta g(x)$$

-- Anti-quark sea polarization

$$A_L(u + \overline{d} \rightarrow W^+ \rightarrow l^+ + \nu_l)$$

$$A_L(\overline{u} + d \rightarrow W^- \rightarrow l^- + \overline{v}_1)$$

☐ Transverse spin program

sensitivity to <Lz> + transversity

Polarized Parton Distribution Function

30 years of DIS/SIDIS measurements

Sensitive to quark antiquark sum

- Recent pp collisions at RHIC Constrain on gluon polarization
- W asymmetry measurement allow us to access sea quark contribution Δu and Δd

RHIC as a Polarized p + p Collider

Measurement of W at PHENIX

18.5 m = 60 ft

Central Arms

|η|<0.35

Trigger: EMCal + RICH ("ERT")

Detectors: DC, PC, EMCal

Muon Arms

1.2 < | η | < 2.4

Trigger: Small sagitta + MuID

+ timing (RPC/BBC)

Detectors: MuTr, MuID, RPC,

BBC FVTX

Flavor-Separated Sea Quark at PHENIX

$$A_{L}^{W^{+}} \approx \frac{\Delta u(x_{1})\overline{d}(x_{2}) - \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})} \begin{cases} \langle x_{1} \rangle >> \langle x_{2} \rangle : A_{L}^{W^{+}} \approx -\frac{\Delta u}{u} \\ \langle x_{1} \rangle << \langle x_{2} \rangle : A_{L}^{W^{+}} \approx \frac{\Delta \overline{d}}{\overline{d}} \end{cases}$$

$$A_{L}^{W^{-}} \approx \frac{\Delta d(x_{1})\overline{u}(x_{2}) - \Delta \overline{u}(x_{1})d(x_{2})}{d(x_{1})\overline{u}(x_{2}) + \overline{u}(x_{1})d(x_{2})} \begin{cases} \langle x_{1} \rangle >> \langle x_{2} \rangle : A_{L}^{W^{-}} \approx \frac{\Delta d}{\overline{d}} \\ \langle x_{1} \rangle << \langle x_{2} \rangle : A_{L}^{W^{-}} \approx \frac{\Delta \overline{u}}{\overline{u}} \end{cases}$$

$$u + \overline{d} \rightarrow W^+; \overline{u} + d \rightarrow W^-$$

PHENIX Muon Arm Rapidity
measuring the different quark 1.2
flavor distributions
PHENIX Central Arm Rapidity

measuring the mixture or quark flavor contribution

W[±]→e[±] Cross Section in Central Arm

W cross sections for e decay channel from both PHENIX and STAR described well along with Tevatron and LHC data.

$W^{\pm} \rightarrow e^{\pm} A_{L}$ at Central Arm

Run11 results are consistent with Run9 published data. Consistent with global analyses predictions.

PHENIX Forward Upgrade Program

Xiaorong Wang, LLWI, February 2013

Research Center

Single Muon Spectrum at Forward Rapidity

Data and simulated muon cross section

W→µ signal
Irreducible background
Fake background

Signal to background ~1:3 $(p_T > 15 \text{ GeV/}c)$

First $W^{\pm} \rightarrow \mu^{\pm} A_{L}$ at Forward Rapidity

$$L = 300 \text{ pb}^{-1}, P = 55\%, S/B = 3.0$$

Expect FVTX to make contribution on background reduction!

Xiaorong Wang, LLWI, February 2013

FVTX Commissioning and Current Status

FVTX covers $1.2 < |\eta| < 2.4$, 2π in ϕ ; 1.1 Million strips (each 75 μ m radial, 3.75 in ϕ);

Expected to improve analysis power by

- Precise vertex determination
- **Better Tracking**

Summary of FVTX Status in 2012

- Over 90% of Detector is operational
- > FVTX collected 30pb⁻¹ data in pp 500GeV

VTX

FVTX-VTX tracking, by A. Key

FVTX

MuTr Matching

W[±]→µ [±] Background Study

• Dominated background is from misreconstructed low p_T hadrons

 K^{\pm}/π^{\pm}

Background reduction with FVTX (simulation)

Summary and Outlook

- W asymmetry offers a cleaner and more direct probe of sea quark spin.
- PHENIX has measured Ws at mid and forward rapidities through W-> $e(\mu)$ decay.
- Run12 p+p 510 GeV run ended successfully. Taking data with VTX, FVTX, and RPC. Analysis is under the way.
- In Run13, an integrated luminosity of 250 pb⁻¹ within 30cm vertex range is anticipated with full upgraded hardware set ready.

The V – A interaction of W+ boson couples only the left-handed u quark and the right-handed dbar quark. Then the produced W+ boson is perfectly polarized to the direction of dbar direction. The neutrino from the W+ decay must be left-handed, then the charged lepton prefers to be emitted to dbar direction.

Figure 2.10: Helicity conservation in production and decay of W^{\pm} boson.

